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1. INTRCJU-.IO,

In 1933 Kapitza and Dirac [11 predicted that electrons traveling in a

standing light wave would be reflected from the planes of peak intensity. The

probability per electron for reflection was proportional to the square of the

product of the field intensity and the interaction time. Because the light

sources available at that time were too weak to generate an observable effect,

the subject was neglected until the discovery of the laser. Since then,

numerous theoretical and experimental studies have been devoted to this subject.

The earliest of these theoretical papers 12,31 followed closely the

original treatment of Kapitza and Dirac inasmuch as they relied on a first-order

expansion of the wavefunction in terms of the standing wave field. Like the

original paper, they are not valid for presently available laser intensities

since they would predict scattering probabilities in excess of unity. M. V.

Fdorov 141 published the first extensive treatment of the problem. By

neglecting the time dependent part of the standing wave, he was able to rewrite

the Schrodinger equation in the form of a Mathieu equation. Solutions were then

found for the cases of a low intensity field and a high intensity field.

Unfortunately, neither of these cases corresponded to intensities used in the

experimnts.

Gash and Gish 15) used the nonrelativistic Green's function for an electron

in a standing wave field to produce an exact solution to the problem when the

time dependent part of the field is neglected. This treatment is not only valid

for all intensities up to the point where the time dependent part of the field

becom.es i.portant but also for electron moenta that do not satisfy the Bragg

conditions. Furthernore, the probabilities for higher-order reflections are

treated. Unfortunately, the final expressions for the scattering probabilities

* are not in terms of known functions and are unwieldy.

-%b 'o- .:,.rnb~~bb
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The question of what role if any the time dependent part of the

standing-wave field plays in the scattering process is still an unresolved

issue. Gush and Gush [5] and others have argued that the time dependent portion

of the field can safely be neglected for the intensities used in the reported

experiments. This conclusion has been disputed by Ehlotzky et al. [6] whose

calculations show that the time dependence of the field has a significant

influence on the scattering of the electron. The validity of their calculation

remains in doubt in view of the -act that except for small interaction times and

intensities the scattering probabilities for the time averaged case differ from

those predicted by the more exact treatment of Gush and Gush [51.

In this paper, the role of the time dependent portion of the standing wave

is investigated using several different approximation techniques. The geometry

and governing equations are introduced in Section II. Various nondimensional

parameters are also defined in this section and interpreted in terms of physical

quantities. In Section III multiple time-scale perturbation theory is used to

calculate scattering probabilities for the case when the standing wave field is

not too strong. 'Tbis case corresponds to the one previously treated in the
literature. The time averaged equation is derived with no further assumption

and the limits of its validity are discussed. This equation is then solved in

terms of Mathieu functions and several new features of the scattering

probabilities are discussed. In Section IV, we treat the case that is

characterized by strong coupling and high electron energies. This case is

discussed using a semiclassical approximation. The wavefunction is again found

to be quasiperiodic within the limitations of perturbation theory. Under

appropriate conditions the corresponding classical problem leads to focusing.

In quantum mechanical terms the focusing is exhibited as sharp localized maxima

is the scattering probabilities. In Section V the conclusio e
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II. MODEL

In this article we will consider the problem of a nonrelativistic,

quantum-mechanical electron interacting with a classical, electromagnetic,

standing wave as illustrated in Figure 1. The electron has initial energy E and

muentum p which is chosen so as to lie in the x'-z' plane. A standing wave of

frequency w lies along the x'-axis and is assumed to be plane polarized along the

y'-axis. The interaction is turned on at t - 0 and continues for a time T - L/v

where v -4'/m is the electron velocity, m is the electron mass, and L is the

interaction length.

The standing wave is given by the vector potential,

A(cos(kx'-wt) + cos(kx' + wt)) - 2A coskx' Cost y. (2.1) p

Here A is the intensity of one of the two counter-propagating fields that

combine to make the standing wave and k - u/c.

Because the electron is nonrelativistic and spin effects are not inportant

for most cases of interest, its behavior is described by the solution of the

Schrodinger equation with the external field (2.1). This equation can be

written in the following conventional nondimensional for:

- 2q cos2x(1 + cos2r/1= - i (2.2a) .

where

x kx' (2.2b)

• - -.



*4

hw2 t (2.2c)

102q " A (2.2d)

S- (2.2e)
2Mc

2

For all cases in which an experiment is feasible 1hw << = 2 so that

C << 1 (2.3)

The initial condition for the wave function is specified by its free-space value

at the time when the interaction is turned on

-x, 0 0) - exp(iSx) (2.4)

where

x 1/hk (2.5)

A cursory inspection of Eq. (2.2a) shows that two types of interaction .of

the electron with the field can occur. In one case the particle only exchanges

mnt. with the field. This is the elastic scattering mode that has been

extensively investigated Li-51. The term in the potential that only has a

spatial dependence determines this interaction. The remaining term is a product

Q" 
. . . . . . . . ..-. .- ..- 

.
.... "... ...' .. ,, "-". .%.. ,.. ".' ...-. '.,-, '. .';..,..'.'.'-..., " .) . -d .

.
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of a spatial and temporal piece. Here the electron experiences a change in both

mmentum and energy each time it interacts with the field. This is the

inelastic portion of the scattering.

Because the potential in Eq. (2.2a) only permits the electron to change its

nondimensional momentum by multiples of 2, the final state of the electron must

be characterized by a momentum pn which satisfies

Pn hkBn hk(B + 2n), n 0 0, ±1, ±2,.. (2.6)

The probability amplitude that after an interaction time T the electron is in af
state with muentm p is given by

1 2

P 6,f' ) exp(-isBZ)O(Z,T )dzI (2.7)

These probabilities must satisfy the condition

P = 1 (2.8)
no-

The strength of the interaction is determined by the parameter q introduced

in kq. (2.2d). In ,irder to provide a physical interpretation for this quantity

it is convenient to rewrite it in terms of the individual wave intensities

I = Ck2A2/8n so that

21rroX2 1 2c .,.q"m ( ,, 2.91

where r0 is the classical electron radius and X = 1/k. When I is rewritten in

terms of the photon number density p (I hwcp) then the quantity in the square

brackets reduces to 2wroX2 p. The coupling constant q is therefore proportional

...... . . . . . ....-..2 . . .. . . . .
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*to the number of photons in acylinder of length 2ro and radius X. For

available laser sources q can reach values of 1-10O8 in unfocussed bawalthough

q 10 is nbre characteristic of the published experiments [7-12).

Becmuse we have been unable to find an exact solution for kq. (2.2a)v we

-have had to resort to various perturbation schemes to find approximate

*expressions for the wave function in different regimes. These regimes are

characterized by the relative size of the adjustable parameters q, c and 0. In

the reminder of this paper we will be concerned with the range of values of the

parameters accessible to the experimentalist.

III. WEAK COUPLING

The weak coupling limit is characterized by the two conditions

and

This case covers the conditions that characterize previous experiments [7-121,

i.e. I 1I~ 0; q 4 10 and c- 1-,106. Under these conditions multiple-time-scale

perturbation theory [13) can be used to find an approximate expression for the

U wavef unction.

In order to apply this perturbation analysis, the wavefunction~ is assumed

to have the following asymptotic expansion:

T) N *nx + 0(cl
n=O

where each *n is a function of the time scales
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k":

tk C T g k-i, , 1, ... (3.2)

The reason for considering a sequence of time scales is that each mode of the

wavefunction has a characteristic time scale - wlc) that depends on C. The

most convenient means of studying all the modes simultaneously is therefore to

isolate effects to a given order of e.

For this problem we need to expand the wave function to order c2 so that

only four time scales are necessary, i.e. t-IwtOwti t2. Of these four time

scales, t1 will make no contribution to the calculation so it will be eliminated

from the start. The time derivative in Eq. (2.2a) is then written as

c- - - + r2 (3.3)
8T at t0 3

Once Eqs. (3.1) - (3.3) are substituted in Eq. (2.2a) and coefficients of the

various powers of c are set equal to zero, the following set of coupled

differential equations emerge:

01-) -= 0 , (3.4)

0 (C 0) L4 t- (3.5)

0(C-) at (3.6)

0(C2  L*] + i - at (3.7)

where

S........-.

~~~....., ,,. .,r . -,.... o._..... ...... . ._,,....
_ ,_ ._ ._ ... ' ............... '.-...'.-



L 9- 2q cOS2x(l + cos2t 1) + i (3.8)
ay2  3- -0

The initial conditions are then given by

*n(x,t1 - O,t0 " O,t 2  0) - no exp(iox) (3.9)

Equation (3.4) requires that *0 is independent of.t1 , i.e. o0=*O(x,to,t2).

With this result Eq. (3.5) can be integrated over t-1 to give an expression for

*1 in terms of *0

*1 " iL(LO0 )t-l q oos2x sin2t_1*01 (3.10)

In general, this equation would contain an integration constant that is a

function of x, to and t2. Because this function can be shown to be a part of

*0, it will not appear in this discussion. The secular term in Eq. (3.10) is

removed by requiring that the coefficient of t-1 be set equal to zero. This

condition yields

92
L*o - -2q cos2x + i - 0 0 (3.11)

and leaves

'1 " -iq cos2x sin2t-.1 0  (3.12)

Equation (3.11) is the one we would have obtained if we had followed the

traditional approach and averaged k4. (2.2a) over the rapid oscillations.

- .- " - . " . % % . . .".".".. . ,".",-%"%" . .. .. .- • ,- .. . . . . . " . . . . . . *. - .. . . .. -%.. ," * *,- - . •.- - -" -

_ ~~~~~~~~~~~~~~._. -. _._....... _ ... _......... -- ,,.. . : _.. ... ,..........,. .. ...,-..,.c,..... _
-
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The solution of Eq. (3.11) which satisfies the initial condition (3.9) is

*o(XvtO~t 2 ) * ~ ~ (t 2 ) Me (x,,q) exp(-ix (q)t) (3.13)
i8+2n B2

with

c, (0) CO2 (q) (3.14)
nI -2n

Here me (z,q) is a Mathieu function [14) of order a and A (q) is its eigenvralue.

The constants CS (q) are the Fourier coefficients of me5 (z,q)., i.e.

me (zq) C' (q) exp i (a + 2r) z) (3.15)

The substitution of kq. (3.12) into Eq. (3.6) and the subsequent

integration over t-, yields the following expression for *2:

*2(X~t1 ) =~ 2q(cos2t -1) cos2x40  sin2x -x-

+q-cos 2x(cos4t -')o*0 B(X,t0,t2) ,(.6

where a is an undetermined function that satisfies the initial condition

B(x,0,0) =0. (.7

There are no secular terms this time. In a similar manner Eq. (3.7) can be

integrated over t after the substitution of Lq. (3.16). Because we are solvingS _
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for the wave function to 0(c2 ), we only need to investigate the differential

equation,

12 - 2q cos2x i B = -i + 8q cos2xo0 4 2 sin2x

a2*01
- cos2x - 3q2(1 - cos4x)*0

3.. (3.18)

that arises from setting the coefficient of t to zero. The left-hand side of

Eq. (3.18) contains the same operator that occurs in Eq. (3.11). We can

therefore write B as

B = bm(X,t2) exp{-iX (q)tTOl. (3.19)

2B+2m

When Eqs. (3.13) and (3.19) are substituted in Eq. (3.18) and the coefficients

* of exp i+ (q)t0 are set equal to zero, the following equation arises0+ 2m

a 2  aa
-2q o q(x+ Jb : -i-+ qc2 sin2x w-

3X2  0+2n) n at2  n

+ cos2xx n ) - q2(5 * 11 cos4x) me+2n (3.20)

We can now apply Fredholm's alternative theorem 1151 to this equation which.

- requires that

i *:Ynon (3.21)

.. %
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where

1 dz 1. - -
y u me 8 me dz (3.22)rn 0+2n 0+2n

and

8q[C X cos2x 2 sin2x - q2 (S+ 11 cos4x) (3.23)

0

Equation (3.21) with initial condition (3.14) has the obvious solution.

0+2n_,.

= -_2n (q) exp(-iyn(q)t2) (3.24)

Equations (3.12), (3.13), and (3.24) can be combined by using Eqs. (3.1)

and (3.2) to give an approximate expression for the wavefunction

*2n*(x,t) [1 icq sin(2r/)] C +2 (q)me'-(qx)= "n=-.. C-2n (q 0e+2n~qx ~~:".""'

x exp{- 0+2n(q) * c2yn(q))r). (3.25)i (IB 2n (3.25) ..- '.

This wave function is still propenly normalized to terms of O(c2). For the

condition that we assumed at the beginning of this section (P-J >> q and

>1 1 01) the corrections to the lowest order wavefunction are negligible. As

an example consider the terms in the square brackets. If we calculate the

porobability (2.7) that the electron will be in a particular momentum state

after a time T then the second term in the square bracket makes a contribution

that is a factor (Cq) 2 smaller than the first and can therefore be safely
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ignored as long as c-1 >> q. Even if there were some means of detecting this

mull amplitude correction, we would have to contend with the fact that this

term in oscillating at the frequency of the standing wave field.

The second term in the argument of the exponential in kq. (3.25) also does.

not appreciably influence the scattering probability as long as we are

considering reasonable interaction times (r < 10). This term introduces a slow

modulation in time to the wavefunction. For q << e, the period of oscillation

is much greater than conceivable interaction times so again the correction

induced by the oscillating portion of the potential can be neglected. We are

thus led to the conclusion that as long as q << E 1 and 101<< C1 the temporally

oscillating tem in the vector potential can be safely neglected. This result

contradicts the conclusions of Ref. [6].

The perturbation calculation is no longer valid when eq I since the

second term in the square brackets of Eq. (3.25) beccmes ccmparable with the -

first term. If we return to the definition of q, Eq. (2.9), and e, Eq. (2.2e),

then the product can be rewritten as

2WT 0X21 " :

eq hwc = 2r 0A
2p (3.26)

where I - taco has been used in the last step and p is the photon number

density. An estimate of when the time variation of the vector potential becomes

inportant is 2rro 2 p - 1. In other words, there is one photon in the vicinity

of the electron at all times. ihis condition makes sense. The time dependent

part of the standing wave represents a stimulated emission or absorption of two

photons by an electron. This process will not be probable unless there are two

photons in th. vicinity of the electron. Because a photon cannot be localized

perpendicular to direction of motion to a distance less than a wavelength, the

2-.- -. •.. . - * *... .. , *-.-.- .. .-......................-.... ,.....""-..'-':'- 'L'¢ " ,. " "" '" - "" . " "''.-' '--' -----.- ''- .. . ."" " ". " -''-- "; "-'" . . . . .."- '-" " "
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vicinity of an electron is the volume 2wr 0 
2 . We have therefore returned to the

condition given by Eq. (3.16). For I - 1 urn, Eq. (3.16) requires

* I a 1014 W/cz . Although these intensities can be achieved for focussed laser

beams they cannot be achieved in the 1 an beams needed to generate a reasonable.

interaction time for the electrons. On the other hand, C02 lasers (X 10 Urn)

require I = 10 1 W/cm 2 for Eq. (3.16) to be satisfied. This is presently possible.

hhen the small terms in Eq. (3.25) are dropped, the wave function assumes

the form

O~x~t- B 2n "

*(xt) C 02n (q)me (x, q) exp{-i 2 (q)t} " (3.27)
2 02n 0+2n

The probability for scattering from an initial state with momentum Pi " Ohk to a

final state with momentmn Pf = (0+ 2r)hk after a time r is then given by Eq.

(2.7) as

O0

r(-.n c (q) C 2 n (q) exp{-ix 2 n(q)-012

(3.28)

and satisfies Eq. (2.8). Although very different in form, the continued

fraction expression for the scattering amplitude derived in Ref. [51 is

identical to Eq. (3.27). The advantages of the Mathieu function expansion over

its continued fraction form is that kq. (3.28) is easier to approximate

analytically and evaluate numerically. iecause the Fourier coefficients of the

tathieu functions satisfy a three term recursion relation [141, Mathieu's

equation can be written as a matrix eigenvalue problem where the matrix is
0+2n..

tridiagonal. The eigenvalues A and the Fourier coefficients cr are then
0+2n .

easily found numerically using any standard program to diayonalize the

tridiagonal matrix.

...................... ,... . . .. . .
. . . . .. . . . . . . . . . . . . . . . . . . . . .
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Figure 2 shows the scattering probability as a function of q for P, - hk;

* p - hk, -hk, 3hk, -3hk and T - 2 for a standing wave with a wavelength of I

uim. The ifiteraction time is chosen so as to represent the approximate time a

. 2020 eV electron takes to travel one centimeter. These values of the parameters
are chosen as representative of a feasible experiment. One noticable feature of

these graphs is the increasing sensitivity of the scattering probability to the

standing wave intensity. This result is not surprising since increasing q

increases the number of terms that contribute to the sumation in Eq. (3.13).

Each additional term adds another and higher frequency component to the

scattering amplitude. Even for relatively low intensities (such as at the peak

of the first maximum of the probability for scattering from hk to -hk (Fig.

(lc)), an increase of q by a factor of 2 is sufficient to move the scattering

probability to near zero. This sensitivity could explain the difficulty with

seeing this effect in the early experiments L7-12). The variation of the

probability with q becomes less severe if B is increased and higher order

scattering is considered. This result is shown in Fig. 3. Although the peak

scattering probability is reduced from the case shown in Fig. 2 it is still =

respectable.

The probability for scattering from hk to -hk and from 3hk to -3hk as a

function of the interaction time T is shown in Figs. 4 and 5, respectively, for

several values of q. Again, an increase in q causes the probability to

fluctuate more rapidly but this time as a function of r.

The last parameter that can be easily varied in an experiment is the angle

between the electron beam and the axis of the standing wave or equivalently B.

In Fig. 6 the scattering probability for the transition from Bhk to (s-2)hk as a

function of B is shown for two different values of q. These graphs show clearly

that for this particular transition the scattering probability is symmetrical.

~. . . . . . .. . . . . . . .

-.. •. .o . • . o*... . . . ... ,..... . . . . . .
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about the point B 1. However, B 1 is not necessarily the point of maxizu

scattering. This could also explain the failure of several of the experiments

to observe'Kapitza-Dirac scattering.

* ~IV. STW COUPLING AN'D HIGH ENENW.

As was pointed out in Section III, the MTrS analysis that Rave the leading

behavior in the form of slowly modulated elgenfunctions of the time-averaged

problem breaks down if q 0(1/r). To examine this cae, we employ a variant of

the wiw method that allows for the possibility of resonance, caused by the tim

dependence of the potential. We find that if certain conditions are met between

the wave characteristics of the incoming electron wavefuncticm and the standing

wave field, the anlitude evolves to very large localized maxima near focal

* points and caustics of the rays of the corresponding classical system. We

* expect that near such caustics the effects of many-particle interactions and

self-radiation will becomes important. A realistic analysis of these# including

relativistic effects, will be presented in a subsequent paper.

This section is organized as follows: In part A we discuss the expansion

used and outline the calculation. In part B we present a perturbative treatment

of the Hamilton-Jacobi equation for the rays; a lowest order resonant case is

pinvestigated in detail, and found to lad to the focusing of rays and caustic

formation. Finally, in part C we analyze the effects of focusing in the

classical proble on the probability amplitude.

A. The Quasiclassical Exension

Although probles where a high frequency appoxiniation is relevant have

been studied extensively for time-independent potentials very few results of

Sthis type exist for the non-separable time dependent case [16). In our

discussion of the Kapitza-Dirac problem we shall use the potential
- *t* .- .
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V(x,t) -Corn 2 X Cos2 t

but the method can be used for more general time-periodic potentials. For

problems of this type we expect quasiperiodic behavior.

in the previous section we saw this quasiperiodicity arise in our MTS

treatment which was valid (at least formally) for moderate energies. In

examining the high energy/high frequtncy behavior in a system without internal

degrees of freedomn, whose classical counterpart is described by a Hamiltonian

H(pq,t) the ansatz

Vi-A exp(iS/ft) (4.1)

is used. Substitution in the Schrodinger equation

H(p,q,t)*(q,t) a L_ (4.2)

(where p E - results, to leading order in h-1 in the equation

H(~tu+uL) + 0 (4.3)

i.e. the classical. Hamilton-Jacobi equation, showing that the phase S

corresponds to the classical action. lie next order produces an equation for

the amplitude (Ir A2 ):

* ~all~~vi+ V) O (4.4)

at q 3q~%.*
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where

-, (3 , q

5- 179.

whose characteristics (rays) are the saw as those of (4.3). From (4.4) it is

seen that w is concerved in ray tubes so that if a tube collapses 7r (and A)

becomes infinite. This happens on caustics of the Hamilton-Jacobi equation i. ..

which are envelopes of families of rays in the (q,t) plane. If we think, in

" (q,t,Sq) space, of the surface formed by the rays through some initial curve

q(e.g. if S q(q,O) is given), then the caustics are the singularities of its

projection on the (qt) plane, corresponding to folds, etc. of the surface.

It must be understood, as was shown by Buchal and Keller (171, that the

higher order terms neglected in (4.4) will became large at the caustic and thus

they must be included there. This effectively gives rise to a boundary layer in

the vicinity of the caustic in which the amplitude is large but still finite.

The thory of geometrical optics allows us to connect through a caustic by

including an appropriate phase shift in the (complex) amplitude. The value of

this phase shift is m(ir/2) where m is the order of degeneracy of the

projection, or equivalently, the number of dimensions lost by the ray tube at

the caustic or the change in the number of branches in the vicinity of the point

considered. The sign is chosen according to whether the caustic is traversed in

the direction of increasing (-) or decreasing (+) S [18). This was first

"" realized by J. Keller in his 1958 paper 1181 where he also pointed out the need

- for many-branch descriptions of the form

* IA~ expik/) (4.5)
km 1
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where r is the number of rays through the point under consideration. Denanding

single valuedness for * he showed that in nonseparable systems, quantum nm*ers

for bound states are in general quarter intergers (asynptotically). V. Maslov

[19] proved the asymptotic character of this approximation as h * 0 for a

special class of problems: essentially "nice" time-independent potentials in

several space dimensions and initial conditions that vanish outside some finite

region. He showed that for Eq. (4.2) with H in the form

H(p,q)= . p2 + V(q) (4.6)

and with initial conditions of the form

,(q,0) = a(q) exp(ib(q)/h) (4.7)

with a(q) zero outside a finite region that an asymptotic expression for ' is

given by

*(q,t) = a(qkJ(q;qok " exp Sklq,-t) + 0Oh) (4.8)
K=1

here J is the Jacobian of the mapping from the initial point q0  of the k-th ray

through q to the point q induced by the classical Hamiltonian flow, S is the

classical action along that ray and is the Morse index of the ray, equal to

the sum of the numbers m for every encounter of the given ray with caustics.

This expression fails at caustics, where the Jacobian becomes singular.

In part B, we derive a formula similar to (4.8) for our problem, without

attempting a rigorous justification (for which we would have to replace our

plane wave initial conditions with a function equal to it inside some finite

j a

.. .. . . .. . . .. . .. . . . .....oo. .• •••............. . . . . . . . . . . . . . .
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*region, that is large compared to the wavelength, and zero outside). The

classical probluni for the Kapitza-Dirac potential corresponds to a pendulum with

oscillating strength, described by the Hamilton-Jacobi equation

St +S2+eq C02X Cost0 (4.9)

with initial condition

S(X#0) E 20X, (4.10)

Here 0 is the wavenumber of the incomning plane wave. We consider especially

Onl/ 2) 0(1/c 2) It can be seen that when 0 is in a rational relation

with the periods of the potential the classical problem exhibits resonance (at

* least, in the sense of perturbation theory), resulting in strong bending of the

1 rays. We treat the case 0 1 /202 (lowest order resonance) which leads to

caustic formation in a time scale of order 1/c.

The leading behavior of the rays if found as

X t + C0(T,Q) + 0(c)

+E- COT.~. + 0(c) (4.11)

* where C0 is a solution of the pendulm equation
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2 COTT + sin2C0 = 0

Co(0,) = CCoT(O,) 0 (4.12)

and C, fixed along a ray, gives its position at t = 0 (T e it is a slow time

scale). we see that the rays are split into groups performing an oscillation

around centers whi.ch drift with uniform velocity. It is clear from (4.11) and

(4.12) that caustics (locations of crossing rays characterized by the condition

x - 0) are cusp-like. They form at the center of each group. (Fig. 7) and move

out, toward the saddle points. New cusps form periodically (with period

T = 2w/c). Every cusp marks an S-shaped folding of the surface P = P(x,t) (Fig.

8) (caustics are singularities of the projection of this surface on the x-t

plane, i.e. they correspond to Px becoming singular). The amplitude is found to

leading order as

A0IT,E) =C0&1 + O(c) (4.13)

On caustics x, 0 implies Cog 0 and A appears to become singular. The reason

is easy to see if we rewrite the anplitude equation

At + 2pAx + p.xA - i 2Axx =0

A(x,0) =1 (4.14)

in characteristic coordinates, (tC), in which it becomes

- .... .. . . . . . . . . . . . . . . . . . . .

**A-, % ..-.*,*,-.'( : ... . . -. -. . .*. 5... .*.. **. *.. . . . ; -; : : . ..* . *.: .. . . -
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A t + A e2i [ 2 .A 0 (4.15)

Clearly, the 0( 2 ) term which was neglected in deriving (4.8) becomes important-

near the caustic. ibis suggests studying Eq. (4.15) by techniques of singular

perturbation theory. This approach was taken for the reduced wave equation by

Buchal and Keller 117). It produces the correct leading behavior near a smooth

convex caustic.

An expansion for is utilized in the form

0 I Ak exp(iSk/ 2) (4.16)
k

with k ranging over the number of distinct branches of the surface P P(x,t).

Branches join at caustics. A local coordinate system is introduced at caustics

and Eq. (4.15) is scaled to give the leading behavior in their vicinity.

Away from cusps, two branches join at a caustic, an incoming and an

outgoing branch. Using a matching procedure, we can determine A on the outgoing

branch from the (presumed known) values of A on the incoming branch. To carry

out the matching it is necessary to analytically continue A into the

(classically forbidden) side of the caustic inaccessible to the rays and demand

that the amplitude decreases exponentially away from the caustic in this region (Fig. 9)

The main result of this analysis, applied to our problem, is that near the

caustic the amplitude is of order

-1/

A 0 O( /6) (4.17)

I

7:7

S 4- - LS C - -. 5**.5-- .. ,"
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which might play a very significant role in situations where there exists the

possibility of nonlinear interaction (e.g. refractive media, radiation, etc.).

The singular perturbation analysis of Eq. (4.15) can be carried out for other

cases, e. g. near the "cusp" (which only appears as a cusp in the x-t plane, being

a smooth curve on the surface P - P(x,t) itself) or even for higher dimensional

caustics. One can use this approach to get leading order estimates for the

amplitude. To carry out the calculation, especially in higher dimensional

problems, one can be guided into the proper scaling by considering the normal

forms that exist giving generic coordinate systems of the surface near various

types of caustics (for a classification and a list of normal forms see, e.g.

Arnold [20]). This way we can find, for example, that near the cusp

A O("/ 4) (4.18)

B. The Expansion Away From Caustics

In Sec. III we were led to study a problem of the type

-qV(x,t'/e
2) -iv

*(x,O) - exp(isx) (4.19)

where

....

.°..

* £ hw/2= 2c

* and

. .

.° .. ... . . .° • .'•....-.. o O~~~~o.... -. o*....-....... ............... o..... ..... ... o. -.. •... -. °. - o.%...,

" . . . " " " " ."" . ". ." '. ...".' '..' , ' ."' " ' - ' -'.'. . -.... , " - " J J -"".'.-.. . . A - ' ' ' ' '
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1 e 2 A2
, q y 1- A2"

Rewritting in terms of t - t'/ Eq. (4.19) becomes

C21xx - CqV(xt)) - -
ft

(x,O) - exp(iox) (4.20)

To keep the discussion general, we leave q as a free parameter. We assume that

B has the form

C" (00 oB1 + 0282 + .. 1 (4.21)

where

a -- ,'"_ .

In Sec. III, the case q - 0(1), a- 0(1) was studied. Here we extend the

discussion to other interesting limits. Using the ansatz

, Ak exp(iSk/E 2 ) (4.22)
k

we find that each branch must satisfy (for simplicity we drop subscripts)

A (S2 + S + c4qV) -i(A t + 2S A + S A) + 2A = 0 (4.23)

£2 t X XX XX XX

...... ..... ..........
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We recognize the expression in the first parenthesis as the Hamilton-Jacobi

equation for the classical action and we resolve the apparent ambiguity in A,S

by requiring that S is precisely the classical action, so that

S + S2 + ¢ qV(x,t) 0 (4.24)

Then the amplitude A satisfies

A +2SA +S A-ic2A = 0 (4.25)At +Sxx xx xx

with initial conditions

S(x,O) = c2sx, A(x,O) "1 (4.26)

It is easily seen that the subcharacteristics of Eq. (4.25) found by neglecting

the term -ic2A are the same as the characteristics (rays) of Eq. (4.24).xx

Since the phase equation is independent of the amplitude it is studied first, to

determine the ray structure of the problem.

Utilizing t as the parameter along the rays and ; as the ray variable, i.e.

assuming that the equation of a ray is x = x(t, ) with x(O,E) = E, we rewrite

Eq. (4.24) in characteristic form

-ax = 2P (4.27a)
at

-P- -0 2V (4.27b)
at x

as 2p2 + Q p2 o 2V (4.27c)
at

°.................................
D -~ . - . . . . . . . . . ~ . - . - 9 ~ t f t
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-Q -
2V (4.27d)at t

where we letS -P

+ ax a

is the directional derivative along the rays. 2he x-P system (Eq. (4.27ab) can

be solved first, then (Eq. (4.27c) and Bq. (4.27d) to allow us to find S.

We shall study Eq. (4.27a,b) using MTS perturbation theory. We expect the

weak (O(o2 )) forcing to result in a slow modulation of the rays. The time scale

for the lowest-order resonant case we shall consider is

- at? a E 2q (4.281):

while

x = Xo(t,T,) + OX 1 + a 2 X2 + O(a3)

P PO + UP, + 0 2 P 2 + O(a 3 ) (4.29)

with initial conditions

X(010

xlO,O) = -.

P(O, "20 0 + 00O + o 2 0 2 + (." (4.30)

.. ...
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Substituting the expansions (4.29) into (4.27) and equating coefficients of like

powers of c we find (recall that a/at - a/t + c(a/at)) the hierarchy of
equations

0(1) Xot n2Po

P 0 (4.31)
Ot

0(o) xit -2P 1 - x0 T

P It -' (4.32)

0(02) x - 2P -x
2t 2 OT

P P -Vx(x0t) (4.33)
2t IT 0

with I. C.

x-(, F, x. (,) 0 0, i - 10,2,

P.(0, ) = 8i' i -0,1,2, ... (4.34)

Solving we find

0(1) x0 - 200t + Co(T,&), C0(O,&) -

P BO('r,&) B0(O) 0 B0 (4.35)
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0(a) B Ot 2 + 12BI - COT)t + CI(TC)

Pim-Bt+ (u) (4.36)
bq... P1 = - B0 t + BI (T,E) 1.6 .

To ensure that the expansions (4.30) are well ordered (asymptotic) we must

disallow unbounded growth in xiP i , i > 0, so the secular terzm must be

suppressed. Itis means

0 0 i.e.B 0 , 0

and

B 1  C C (0#,C) 2B 1(0,C) 28, (4.37)
2 OT O'r

* So far, Co(t,&) has been undetermined. To find it we need to consider the next

* order, 00o2). We get

bt

S{VOTT (28 0t + Co,t)dtt + B2 (T#,)

0

B2 (0,~1 * 2(4.38)

Again, to suppress unbounded behavior in P2 , we denand

i~:C 1 lim IV1 tt
1 °

.Cl I 0
1.,

.- + r V (280t + C0 -t)dt (439)2 OTT t-mJ x

0

t"
' °

...... . .. . * . .. ° . • . . .... . . a a .* '
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(assuming the limit exists, which it does for V periodic in t). The

construction can be continued to higher order, but here we only need the leading

behavior. We found

x - 2 0 t + CO(T,C) + 0(o)

P O + a( CO) + 00(2) (4.40)

where CO satisfies Eq. (4.39). For the potential

V(x,t) cos2x cos2t V V - cos2t sin2x (4.41)

we have

Vdt. cos2(200t + Co) cos21(2o±l)t + C0
00

a bounded function if So 0 0, ± 1/2. In this case, Eq. (4.39) gives

Co(C,t) BIT + C and the slow time scale r only appears as a modifications of

the fast scale t. In general for a problem of this kind, we should consider a

modified fast time scale

t* W(O)t = (WO + owl + ... )t

and a slow time scale

r a- 
•

.......
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where a is determined by the type of resonance expected. To treat the simplest

case, we consider
I

0 1 " 0 1 11-O = - A . , -i 
= 0 I 2 ... '- '"......

q C 2 , oC (4.42)

Now we have a lowest order reronance; the integral in Eq. (4.39) becomes

t1
V dt - cos(2t + 2C0  1 - cos(4t + 2C01

St 16
0

SI
- 6 cos2CO -I sin2CO (4.43)

and the equation reads

2C + sin2C( 0 14.44)
OTT i2Cr

with 1.C.

C 0(0,) = , C T(0,) = 0 (4.45)

OT I -

Finally, utilizing Eq. (4.40) in Eq. (4.27c) we find

S= t + -C+OE
4 20

Turning our attention to the amplitude equation I

-S -• -. *9
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A+ 2PA + P A E2 1Ain (4.46)

we transform it to characteristic coordinates

X-1 + 2P a 4.7a 1~a~ * ~ 4.47)

7x 5& at ax a

to find

At + x C c2i x 1 (448)

Assuming

A AA + CAI + 0W2)

and using

1 C £(1C )+ 0(c 2 )
2 OTC

we have

A + (C + 0 (c) ((1 C )+ 0(c 2 ))A - (C2) (4.49)t 0]

from which we find

Mai..



OM1 A at -0 A MAC(T,) With A0 (0,t) -I

A
0O(E) A + A + L~C .0.

I t 0 t C 2 or

A, - (A + IA OTE )t + (bounded part)
OT 2 C0

so finally, demianding that Albe bounded we find that AO is given by

AO (T&) (4.50)

*Collecting our results we see that the leading asymptotic behavior of. is given

* as:

* ((C ) + 0(c)) *xp - 7t + C0 (T,E) + O(0)) (4.51)
2W

with C. satisfying Eq. (4.44)-(4.55). We see (Fig. 7) that the resonance causes

a slow-time bending of the rays so that the surface P aP (x,t) given by

2 t + C0(T,&) + O(E)

2 (1 + +~ (4.52)
22 £( OT) (

*develops folds at points where X *0, or equivalently, x -0 -i-C a 0.

p 0&~

Clearly this vanishing leads to a blowup in Eq. (4.50), invalidating our

asymiptotic solution at such points. What went wrong in our analysis is

apparent: Eq. (4.48) was analyzed by a regular perturbation expansion,



32

affectively neglecting the O(C 2 ) term in finding A . In the neighborhood of

envelopes of rays, where x =. O, this term clearly will be important so that A

would stay finite, although it will become very large there. For this reason

points where x - 0 are called caustic points. In the next section we omplete'

the picture that this analysis presents by discussing the behavior of solutions

in the neighborhood of caustics.

C. The Behavior Near Caustics

. We now investigate the behavior of the amplitude near caustics.

Following Ludwig [21], we recognize expansions of the form

€ , Ak exp(iSk/p2) (4.53 "

k

as resulting when expanding integrals of the type

I A(x,t,z) exp(iB(x,t,z)/c 2 )dz

by the method of stationary phase. Clearly, assuming that 0 can be represented

as a superposition of plane waves, we will have, as E O, contributions frou

points where

B -0, B 0 (4.54)z zz ii2

Such points can be shown to correspond to regions away from caustics, where the

expansion (4.8) is valid. Smooth caustics correspond to

B - 0, B # 0 (4.55)
-. zz zzz --
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while, finally cusped caustics are found if

p

B 0, B 0 (4.56)ZZZ ZZZZ ".-

System of rays in two dimensions have in general singularities of the "fold" -

(i.e. smooth caustics) or "tuc" (i.e. cusped caustics) kinds (see Arnold [20]),

unless some exceptional situations happen. An easy calculation shows that for

our problem the worse thing that can happen is a cusp, so we only need to - -S

consider the cases for Eqs. (4.55) - (4.56). We can encoiass all cases by the

exact change of variables

A.

B(xt,z) - S(x,t) + rj9 - r 2&2 + (4.57)

(with ri - ri(xt)) which is related to the normal form that obtains near a

"tuc" singularity (Eq. 56)). Then, by following the same procedure as in Ref.

L211 for the Schrodinger equation, we can construct uniformly valid expansions

which, away from caustics, reduce to Eq. (4.8), near smooth caustics have

leading terms involving the Airy function and its 1st derivative and near the cusp

involve a generalized Airy function with two arguments and its two 1st

derivatives. By considering the asymptotic behavior of the Airy functions we
I

can find the order of the amplitude in the vicinity of caustics, and by

analytically continuing to the classically inaccessible regions we see that our . "

solutions decay exponentially there. Since here we are not as much interested

in the detailed behavior at all regimes but mainly on the order of magnitude of

the focusing at caustics we shall follow instead a singular perturbation

approach due to Buchal and Keller J171. We introduce boundary layers at

caustics and determine the solution in their vicinity by stretching coordinates

-.,_. ..'.- ..'.~ ~~......' ,_.....,.... . .=. -. . ;.... ....... •.... ,..... ................ ,..................
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and matching with the "outer" solution. We shall use this method to give the

expansion near a smooth convex portion of the caustic and then we shall give an

argument about the behavior near the cusp. We prefer the singular perturbation

approach because it would be applicable in a more interesting setting, namely a-

weakly nonlinear equation that has singularities related to folding

subcharacteristics. Clearly, in such cases, it would be impossible to argue

frcm the point of view of integral representations, while the boundary layer

idea would still be relevant (after suitable modification).

We wish to study the equation

At P i 2  2
At +- A- iA A 0 (4.58)

, .

near characteristics where x, = 0 and the second derivative term becomes

singular and cannot be ignored. The equation of a ray was found to be (to the

leading order)

X - t + Co(&,T) + O(C) (4.59)

while on caustics x, 0, i.e. Cot 0. We let

C (QT) "0 T "bill, i.e. t - b()

Then the equation of a caustic will be

x - 1-b(&) + Co(Q,b(Q)) + O(E) (4.61)£:. •";. I--

p

• .- . . . .*. * . . * * . * . . .. ... . . . . .* * t * . 4 . . . . ' . . ~ * ** * -
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With Ref. [17] we introduce a new coordinate system (r,s) where r is arclenptA

along the caustic and s is arclength along the ray tangent at r, measured

respectively, fram sane fixed point and from the point of contact (positive

after, negative befoe)(Fig. 10). An easy calculation shows that, near the.-

caustic (i.e. for T - -) "smll")

s j-1r- bil) + 0(1) (4.62)

Along the caustic we find (for &0 sane fixed number)

r - (b() - b( 0)) + 0(1) (4.63)

while the radius of curvature of the caustic p is found fran

C2 (Co t + b COTT( I
_ "/ (4.64)- -

2]3/
P b[I + (I + ECC.) """

where C < 0, b C > 0 on the caustic (Fig. 11). The analysis we present

here will be valid unless p " -, which happens at the inflection point. The

difficulty is not a real one though: it can be resolved by using a better

coordinate system, e.g. arclength along the caustic and normal distance from the i -

caustic (our present coordinate system would became rather awkward). In the

convex part of the caustic, we set

R(&), (R 0 o(1)) (4.65)
C2

Utilizing Eqs. (4.62) - (4.63), we find that the equation becomes (to leading

order)

"° "* . - " o" .. . . . . . . . . . . . . . . . . . . . . ..- 
o

"o"
* •

. . . . . . .. • " * '
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c2 -S S S

all the term of this equation will be of the same order if we introduce a

j scaled variable

(10E2/3

Clearly (see Eq. (4.62), a is another slow time scale, 0 E /(t -b(&)/c). In

terms of it we have

2h1 + -1A-Ri r) (I1 0 (4.67)aY a a aa 

'ibis equation is analyzed in Ref. [17] where a matching with the outer expansion

*is carried out to leading order. Adapting the results to our case, we have that

the outer solution is

AO 1C l(T b(g))C ~(,b)j , T < b(&)

A0  exp(-ri/2) JCO& I > b(&)

* (in agreement with Bq. (4.8), and the discussion in part A), while the inner

solution is

C-1/6 2S/6 7FR 12Cg0  exp(± j.

Ai (-() 2/3 2R 2exp( 2I - 0 -
-)1.e p(..i 3R2
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(according to T - b < 0).

2/3Therefore we can say that the caustic boundary layer is of thickness e (in T)

and the amplitude there is

A = O(S-/6

We are able to carry the matching out between incoming and outgooing branches by

superimposing

*incoming + * outgoing

and demanding that the continuation in the classically inaccessible region is

exponentially decaying away from the caustic.

It must be noted that we did not give a uniformly valid expansion but only

leading terms near and away from the caustic. As shown in Ref. [21], a

uniformly valid expansion contains a term that in the caustic is of O( -.6,

involving the derivative of the Airy function, which in some intermediate region

becones important and must be included. A similar term should be obtainable by

the matched expansion method if we carry it to the next order.

We close this discussion by giving an argument for the order of A at the

cusp. By introducing

T =  -0 Zm = - C0"'o
T T -To , z-&0

where (rO,&O) is the position of the cusp with

- .l .i ,2
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x 0  - + CO(O,T O)

we have that in the neighborhood of the cusp rays are given by (to leading

order)

x T + C ZT + I Z3 (4.68)

-x O. OT 6 Co

(all functions evaluated at (T0 ,t0)). Then

x C0T+ 1IC Z2 +
x OCT 1 2 Ottt

P C- C +..t 2 OTC

It can be easily seen that at QF,01 0), (Co< 0, C > 0, so that Eq. (4.68)

is a surface in (x,Z,T) space that forms a fold at T - 0 as expected.

Transforming the anplitude Eq. (4.58) to (Z,T) we have (letting C O a,

C b)

1 ca f1
eT+ - A-ic2  12 A 0

aT + hbZ2  aT + hbZ 2 aZ A

and all terms are of the same order if we introduce scaled variables

-T " a2 , Z a .-

where

. . . . . . . . . . . . . . ... . °° . o ° °. ° % . . . . . . . . ._ _ _ _
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G-1/4

We note that ao + b - 0 giving the caustic is a smooth curve: its projection

in the x-t plane has a cusp at 0 C 1 0 (x ax 0 ). The outer expansion

A0 1(C )-1/2 becomes, in the vicinity of the cusp

12A" (COCTT + y C0  Z

and in terms of inner variables

-1/4 1 -1/2

A0 e ' a + "b;21 (4.69)

Ia-1/2

* Without being proof that A 0(c 1 / 4 ) near the cusp, it still provides us with

a good indication as to what we can expect there (it turns out to be what we

would get if we carried out Ludwig's method for this case) [22].

V. CIMMSIOh

In this paper we have investigated Kapitza-Dirac scattering in two

:. experimentally interesting regimes of values of the governing parameters q, B

and E. The choice of two regimes was based on the distinct methods used for

their study as well as qualitative differences in the behavior of the system.

Previous analyses of this problem let to conflicting answers on the role of the

time dependent portion of the Hamiltonian. In the first case examined in this

paper (q, B << c-1 ) it was found that, to lowest order, treatment of a

time-averaged problem was basically justified. Time dependent effects were

essentially of two types: a small (0(cq)), rapidly oscillating correction to

the amplitude and an 0(c2) correction to the frequency. This analysis breaks.

.............................
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down as q or 8 becomes comparable to c" . We showed how to treat a

representative case using a ueiclassical approximation. It was found that

again the behavior is quasiperiodic but under certain "resonance" conditions

focusing leading to large localized maxima of the probability amplitude is

possible.

One obvious advantage of an analysis in the weak coupling regime is that it

provides a solution that can easily be used to study scattering probability as a

function of any of the parameters. For instance, we provide the first study of

the sensitivity of scattering to the standing wave intensity. From our studies,

we find the inconclusive results of the experiments not to be surprising.

Finally, we would like to point out the general applicability of the

perturbation technique employed in our study to other nonseparable

time-dependent situations. In fact, the qualitative aspects of our results only

depend on the potential being a periodic function of space and time. Extension

to more general time periodic potentials is straightforward. Of course, results

of this type are subject, especially in their long-time applicability, to the

limitations of multiple-scaling perturbation theory.

. . .'.
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FIGURE CAPTIONS

Fig. 1. A schematic of Kapitza-Dirac scattering.

Fig. 2. Scattering probability P as a function of q when T = 2 for scattering

form pi = hk to (a) pf= 3k, (b) pf = hk, (c) pf = -hk, (d)

Pf = -3t1k.

Fig. 3. Scattering probability P as a function of q when T 2 for scattering

from Pf -3t1k to 311k.

Fig. 4. Scattering probability P as a function of T for scattering from -i

pi = -hk to Pf :, hk when (a) q = 3, (b) q = 5.

Fig. 5. Scattering probability P as a function of T for scattering from

Pi - -3hk to pf = 3hk when (a) q = 3, (b) q = 5. --

-Fig. 6. Scattering probability P as a function of 8 for the transition from

P. = 8hk to Pf = (8 - 2)hk when T 2 and (a) q = 3, (b) q = 6.
1f

Fig. 7. (a) Phase plane for Eq. (4.12)

(b) Rays (Eq. 4.11a) in x - t plane

Fig. 8. The surface p = p(x,t) (scales as shown).

Fig. 9. Structure of solution near a fold of the surface p = p(x,t).

(a) Outer (classically accessible) region: solution can be given as

tkV superposition of two waves.

(b) Boundary layer: solution is an Airy function oscillating with

large amplitude to the left of x (caustic) and decaying to the right.
C

(c) Outer (classically inaccessible) region: solution decays

exponentially.

This is only a schematic true A complex.

Fig. 10. Ray-caustic coordinates: r is arc length along caustic (solid line),

s is arclength along ray (dashed line). At C, s 0 while at A,

r =0.
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Fig. 11. Snapshots of C0(&,t) as a function of for 0 *To < r1( T2 < T3 - At

the caustic (C,, 0) we have C < 0, sgn C0  -sgn&(modw) while at
0&T O

i (modwr) -0 we have an inflection point (C -0).
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